Determine whether a Relation is a function.
 i) a set of points or ii) an equation.

Definition: A Function is a set of ordered pairs that assigns to each \mathbf{x}-value exactly one \mathbf{y} value.

i) Set of points

- To determine if a Set of Points is a Function, examine the entire set and decide if it meets the definition requirements.

EXAM PLES

a. $\{(-1,1),(2,3),(7,3),(8,6)\}$
b. $\{(0,-2),(1,5),(0,3),(7,7)\}$
a. Although the ordered pairs $(2,3)$ and $(7,3)$ have the same y-value, each x-value is assigned to only one y-value so this set of ordered pairs is a function.
b. The x-value 0 is assigned to two y-values, -2 and 3 , so this set of ordered pairs is not a function.

TRYIT!

1. $\{4,1),(3,-2),(8,5),(-5,3)\}$
2. $\{(1,2),(-4,3),(0,8),(1,4)\}$

ii) Equations

- In order to determine if an equation is a function we can look at two categories, linear and non-linear relations. Let's look at each category separately.
- Linear Relations - There are five types of linear relations we are familiar with; $y=m x+b, A x+B y=C, y-y_{1}=m\left(x-x_{1}\right), y=b$, and $x=a$. The first 4 are all functions. We can deduct this conclusion knowing that each of those equations forms nonvertical straight lines which, by the vertical line test, are all functions. The fifth relation is certainly not a function since it is the equation of a vertical line (Thus failing the vertical line test).
- Non-Linear Relations - There are many non-linear relations to potentially consider. Here are a few general rules to help sort them out.

1. Graphing the Relation by plotting ordered pairs is always a good option. The Vertical Line Test can then be used.
2. Is the relation solved for y ? If so, test to make sure that each x-value is assigned exactly one y-value. If not, it's not a function.
3. Solving the equation for y is useful. Use \#2 above to determine if it is a function.
4. Are there any y^{2} or even-powered y terms? If so, be very cautious. These relations are not functions. (This is not true for x^{2} or even-powered xterms)

EXAM PLES

$$
\begin{gathered}
\text { FUNCTIONS } \\
y=x^{2} \\
y=\frac{1}{x} \\
x y=4
\end{gathered}
$$

TRYIT!

3. $x=2$
4. $y=-4$
5. $y^{2}=x+2$
6. $2 x=3 y+6$
7. $x=\frac{5}{y}$

Answers to TRY IT Sections:

1. Function
2. Not a Function
3. Not a Function
4. Function
5. Not a Function
6. Function
7. Function
