Determine whether a Relation is a function.

i) a set of points or ii) an equation.

Definition: A **Function** is a set of **ordered pairs** that assigns to each **x-value** <u>exactly one</u> **y-value**.

i) Set of points

- To determine if a Set of Points is a Function, examine the entire set and decide if it meets the definition requirements.

EXAMPLES

- **a.** {(-1,1), (2,3), (7,3), (8,6)} **b.** {(0,-2), (1,5), (0,3), (7,7)}
- **a.** Although the ordered pairs (2,3) and (7,3) have the same y-value, each x-value is assigned to only one y-value so this set of ordered pairs is a function.
- **b.** The x-value 0 is assigned to two y-values, -2 and 3, so this set of ordered pairs is not a function.

TRY IT!

- 1. {(4,1), (3,-2), (8,5), (-5,3)}
- 2. {(1,2), (-4,3), (0,8), (1,4)}

ii) Equations

- In order to determine if an equation is a function we can look at two categories, linear and non-linear relations. Let's look at each category separately.
- Linear Relations There are five types of linear relations we are familiar with; y = mx + b, Ax + By = C, y - y₁ = m(x - x₁), y = b, and x = a. The first 4 are all functions. We can deduct this conclusion knowing that each of those equations forms non-vertical straight lines which, by the vertical line test, are all functions. The fifth relation is certainly not a function since it is the equation of a vertical line (Thus failing the vertical line test).

- <u>Non-Linear Relations</u> There are many non-linear relations to potentially consider. Here are a few general rules to help sort them out.
 - 1. Graphing the Relation by plotting ordered pairs is always a good option. The Vertical Line Test can then be used.
 - 2. Is the relation solved for y? If so, test to make sure that each x-value is assigned exactly one y-value. If not, it's not a function.
 - 3. Solving the equation for y is useful. Use #2 above to determine if it is a function.
 - 4. Are there any y^2 or even-powered y terms? If so, be very cautious. These relations are not functions. (This is not true for x^2 or even-powered x terms)

EXAMPLES

FUNCTIONS	NOT FUNCTIONS
$y = x^2$	$x = y^2$
$y = \frac{1}{-}$	$x^2 + y^2 = 9$
x	$y = \pm \sqrt{x+1}$
xy = 4	

TRY IT!

3.
$$x = 2$$

4.
$$y = -4$$

5. $y^2 = x + 2$

5.
$$y = x + 2$$

6. $2x = 3y + 6$

7.
$$x = \frac{x}{y}$$

Answers to TRY IT Sections:

- 1. Function
- 2. Not a Function
- 3. Not a Function
- 4. Function
- 5. Not a Function
- 6. Function
- 7. Function